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[. INTRODUCTION

It is well known that elliptic boundary value problems can be solved by
several numerical procedures, such as the Ritz—-Galerkin method, the finite
element method, the finite difference method. and the conservative difference
scheme. However, it appears that there has been little or no work done on
combining these methods. Of course. each of these methods has its
advantages and shortcomings. The use of combined methods is particularly
important in problems with complicated boundaries or boundary conditions.
or in problems with solutions that are not smooth enough or have
singularities, or in problems with unbounded solution domains. In such
cases, a single method is often ineffective. In this paper we study a combined
method which has been widely used.

In 1973, Strang and Fix {7, p. 135] mentioned the idea of combining the
Ritz—Galerkin and finite element methods. In 1977, Zienkiewciz et al. [10]
gave a systematic presentation of a combined method based on the boundary
integral method and the finite element method, which cannot. however. be
used for general nonhomogeneous equations.

In this paper, we introduce another combined method, which is noncon-
forming because the admissible functions are continuous only at the element
nodes on the common boundary of both methods. However, it is usually the
case that nonconforming effects are of little importance to the numerical
solution obtained. This method has the advantages that it is valid for the
general nonhomogeneous elliptic boundary value problem, and is reasonably
simple to describe.
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2. THE CoMBINED METHOD

Consider the two-dimensional model problem,

é &u 4 ou’ )
”;(ﬁg)*;(ﬁ:)— \ (x.v)E S, (2.1)

u=4g. (x.y)er, (2.2)

where § is a convex polygon with boundary 7, the functions f# and /f are
sufficiently smooth, and f=p(x,y)>f, >0, for some constant fi,. The
model problem, (2.1) and (2.2}, can be expressed in a weak form

a(u, vy =[(v). Yo e HIS), (2.3)

where the true solution u € H.L(S).
a{u, v)= ‘ Blucv+u, o). (2.4)
J

f(tf)znlsﬁ.x (2.

[
L
-’

and the spaces are given by

Hiy(S)y={v.v. v, €L(S) vl =gh
Hy(S)={v v, v, € L3(S). vl =0l

Let S be divided by a circle I, into two subdomains: a circular domain §,
contained in § and another domain S, such that §=5,US,. Two quite
different methods, the linear finite element method and the Ritz—Galerkin
method, are used on §, and S, respectively. Let S, be subdivided into small
triangular elements A4; of maximum width A, and let the nodes of those
elements adjacent to .S, lie on I, (Fig. [). The admissible functions for both
methods are continuous only at the element nodes on 7, so that this
combination is nonconforming. This combination of the Ritz—Galerkin and
finite element methods has been discussed in Li and Liang |5] for the case
where common boundary I'; is piecewise straight.

In order to simplify the method, isoparametric elements are not used:
therefore the triangularized domain S’,’ only approximates S, (Fig. 1). i.e..

S”’;:UA,.:S,. (2.6)

The noncoincidence of $% and S, may cause some difficulties; its effects on
the numerical solution of the model problem will be studied in this paper.
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Fii;. 1. The domain subdivisions in the combined method.

Let the admissible functions for the combined method be

Uy =1, (x. )8
\
=fy=\ do, (x.y)ES,, (2.7)
{0
and
Py = (P P.er,. (2.8}

where 1, are piecewise linear interpolation functions on the triangularized
domain S*. {¢,} are complete, linearly independent basis functions, the 4, are
unknown coefficients, and P; are the element nodes on /. The space of
functions v, satisfying (2.2) is denoted by V7. the space of functions ¢,
satisfying v, |, = 0 is denoted by V5.

The combined method based on the Ritz—Galerkin method and the linear
finite element method requires one to find an approximate solution u} € V'
such that

a(uf, vy =/(v). Yo € VY, (2.9)
where
au,v)=> ‘ Bl tu,e)+ ' Blu v +uov) (2.10)
i A 783
and

fmzihﬁ+yﬂ (2.11)
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Note that the admissible functions v, are not continuous on [, except at
the nodes P;, hence

Vi HL(S) and V& HY(S). (2.12)

In considering the above method, the following questions have, naturally,
occurred to us:

Are the effects of (2.12) severe enough to prevent us from getting a good
numerical solution?

Is the approximation (2.6) permitted?

What are the error bounds for the numerical solution of (2.9)?

We now investigate these questions.
The true solution u on §, can be expanded as

1 1
U= _\_ 3550 + l_ {a, cos it + 5;,. sin {19)5 T{r)+R,. (r.8)E S,.
-1 }

S L

where the T(r) are complete polynomials of order /, @, and b,, are expansion
coefficients, and R, is the remainder. Hence, it is reasonable to choose the
following functions as the admissible functions on §,:

i {

f,\, — l: 3010 + _\_; (a,,- cos if + b“ sin lG){ T,(r), (2 14)
o i1 }

where a,; and b, are coefficients. To simplify the analyses, we assume that
the subscripts / and / of the coefficients a,; and b,; are both bounded by some

integer L.
We define a norm on V) as follows:

~

fo)y= [HU“;ZJI(E';) + H’v’”lzmsz)lm‘

where || - ||;;..s,, is the Sobolev norm [6]. Then ¥}, is a Hilbert space, and the
norm |lv|l, is also a measure of the mean value of v and its generalized
derivatives. We shall assess the error of the solution obtained by Eg. (2.9), in
the norm [[-]],.

We give a bound on the error of the solution in the following theorem: the
proof of which is deferred to the next section.

THEOREM 1. Let the admissible functions f,, be given by (2.14), and v,
be piecewise linear interpolation polynomials on S% where the following
inequality is assumed:

h/Min h, < K, Jfor {i|4,is adjacent to I'j}. (2.15)
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Here the h; are the maximum widths of the elements adjacent to I'y, h is the
maximum width over all elements, and K, is a bounded constant independent
of h and h;.

Moreover, suppose that a, in (2.9) is uniformly V-elliptic, i.e., there exists
a positive constant a independent of h and L such that

allell; <a,le.v), Ve vy, (2.16)

With these assumptions, the solution uj* of (2.9) satisfies the following error
bound:

u— iy < Kb {ulsn + IRy, + h' IH/f‘u“mﬁ’p ity |

L cu [

+ (ftzL2 + h}'tz) + R Euinlu‘“»

on ill“(l",v

{2.17)

R N

i ) iy
+ PUE ’Rﬂuwr,,) +h

{
UL ¢

where AS"=S"N'S,. éu/én is the normal derivative on I',. and K, is a
bounded constant independent of h and L.

Throughout this analysis K, represents a generic bounded constant with
possibly different values in different contexts.

The first and second terms on the right side of (2.17) are the error bounds
from the linear finite element method on S’ and the Ritz—Galerkin method
on §,. respectively. The third term is the error bound from the approx
imation (2.6), but it is at most O(h"?) because Meas(4S") = o(h’) and. in
general, there exists the bound

max 4 S bl <K
e,\'.,\-)sgs’; :
The rest of the terms in (2.17) are from the nonconforming elements on /.
Among these terms, the term A L° |¢ujénlypg, is the most important. In
order to get an error bound of the form

K, h. (2.18)

; 1 o
lu—uft, <

Y/

the inequality
L<Kh (219

must hold. Consequently, an important problem for the combined method

(2.9) is how to choose the integer L for the Ritz—Galerkin method on S,.
Inequality (2.19) usually holds because we are frequently able to obtain a

valid expansion in {2.13). For example. suppose that the solution on §, has
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bounded partial derivatives of order u (»3). Then, we have the following
bounds on the remainder |2.3}:

1

”R.\‘Hnusz) <K, T T (2.20)
) 1
Ry ‘u"u(.)ﬁKl‘LT- (2.21)

and

1
Ry ‘HZU'“) =K, Ju-1t

(2.22)
Consequently, the error estimate (2.18) is obtained from Theorem 1 provided
that the following optimal value for L is chosen:

L=1L O(h ') (u>3). (2.23)

opt =

In this case, inequality (2.19) naturally holds.

COROLLARY 1. Suppose that all conditions in Theorem | hold, and u on
S, has bounded partial derivatives of order u > 3. Then, if we choose L as in
(2.23), the error estimate (2.18) holds.

From (2.9), we obtain the algebraic system
Ax = b, (2.24)

where x is an unknown vector with the elements (v ). a,;. and b,,. b is a
known vector, and the matrix A is positive definitive. symmetric. and sparse.
Hence, the numerical solutions of (2.24) or (2.9) are easily obtained.

The total number of coefficients a,; and b,; is (2L + 1)(L + 1). which is at
most O(h~ ") (see (2.23) or (2.19)). This is much less than O(h ?). which is
the number of the element nodes in the finite element method. Thus the use
of the combined method can result in significant savings. Obviously, the
larger the subdomain S,, where u has bounded partial derivatives of order
4 > 3. the less the cost of the calculation in (2.24).

Theorem 1 is still valid for arbitrary complete polynomials {7,(r)}. In
order to insure a stable solution to (2.9), we should require that the set 7'(r)
be orthogonal. For example, we may choose T,(r) to satisfy

-R

’ rT/(r) Tm(r) dr = 0. 1?& m,

Y0

= ]. [ = m,
with R equal to the radius of I',.
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3. THE PrROOF OF THEOREM |
Let us first prove several lemmas.

LemMA 1. Suppose that the uniformly V'-elliptic inequality (2.16) holds;
then

[ = ujflls <K

linf‘ lu— vyl
vaEV,

'
I

+ su;? ’A | fw, = Bulw,), +uw) )/ w,l,
whE 0 J
u . NSy )
én e @y — Wy ) SNER!
an yor, whEB‘h’ [Jr“( h ) J /H(uhHh\ (3.1)

where
Wy = Wyls, =S Wy =wyls =0,
Proof. When (2.16) holds, the basic estimate for the error bound of

nonconforming elements has been obtained by Strang and Fix |7,p. 178]
and Ciarlet [1, p. 186]

e —uiflly < Kof inf u—vylly + sup 1S (wp) = @y opllloglyt. (3.2)
vy€l, wyE ;"

By applying Green's theorem and (2.1). we see that

Sw,) —ayu, w,) = ‘ fwh Blu (@), + ulw,), [}
+ {‘ B, | pa, (3.3)
‘s, on Yes, on

where &5, and &S, are the boundaries of §' and §,. respectively. Since the
normal flow f(éu/on) on I, is continuous, it follows from Schwarz’s
inequality and w, |, = 0 that

PG| e i<

Jés, O Y88,

|‘ ﬁ:z (w, —w, )l

.

3

. 1.2
1w

\

K Hul‘ [’ {wy -~ u),,)l} 1(3.4)
" r 100 Iy

Consequently, inequality (3.1) is obtained from (3.2)-(3.4).
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Lemma 2. Let vy in (2.7) be piecewise linear interpolation functions on
St and f, be the functions (2.14), then

1/2

sup U: (wy ~w,:‘)2} KK ((RLY + 7Y o, (3.5)

wh&Vg

Proof. We notice that the functions w, (E€V?) are continuous on the
nodes P, € I'y, so that

wy(P)=wy (P)=w;(P), @, EV}.

A piecewise linear interpolation function with respect to 8 is constructed as
follows:
Wu(R, 6, ) — wy(R, 8)

H(B) = w,(R. ) + )

(3.6)

where (R, 8,) are the coordinates of the nodes P, on I', with §,, , > 8,, and R
is the radius of the circle I',. Then we have

|| wi—wpy } <[], @i ~H(9))2}”2 #|f (0, —ne| "

“Ty Ty Fy

For the piecewise linear interpolation functions H(f), we have the
inequality (Ciarlet [1])

| () = HO <k o) - (3.8)

Ty

By applying @, =fy., (2.14), and the orthogonality of trigonometric
functions, after some calculations we find

(/;Ewo 2
+ 2 Tk
(Uj, l;} - :{ < - )
! 131y I (’82 ’

(L

L -’ 2 L 2
=n> i s[\ auT((R)} +[\‘ inT[(R)J ! R
i~1 ) 1‘—_1 (’h”_l g
~ s 2 :
<L lan (: a,(,) +a\ H
|

{=Q i

8

— L] (@) <K LYo, (3.9)
"y

i 2
: ay; T/(R)}

10

5

I
+ [:; bf,-:n(ml
}

[

where in the last step we have used the imbedding theorem of Sobolev |6].



140 ZI-CAI LI

Then, since
w, =a;+b;x+cy
=4a;+b;recos@ +c,rsinf. (x.r)ed,.
where a;, b,, and ¢, are constants, we find that

AP
C »I:LJ I

o’

. B -
[ lo, ~ HOF <K N 0] ( ) Rdb

=K, R*N hi| (b, cos 6+ ¢;sin6)° R df

s

2K, RPN RIR(G, .| - 6,)(b] + ¢;)
i G RG —6) | jéw, [ éw T
SN L R
o= Meas(a,) | L oax ) ( iy ) ;

<K R il (3.10)

where K, is a bounded constant independent of %, and in the last step we
have used the Sobolev imbedding theorem and the inequality

R,

P

A}/ Meas{d,) < K, k.

i

for regular triangular elements ;.
Inequality (3.5) is then obtained from (3.7}(3.10).

For estimating the bounds of inf. ., {lu-1r,l, in Lemmal. let us
construct an auxiliary function w, € V} in the following way:

Wy, = i, (x.yyesh
B I.{ S ! A
=/, = l_ ' + }_ |a, cosif + b, sin if| T,(r){‘ (x,es,.

I()( [
3.1

where f\ is the approximate expansion of u (see (2.13)). and #, is also a
plecewise linear interpolation function on S but its values on the element
nodes P; of S¥ are given by:

@, (P)=u(P),  PET,
=fdP)  PET,. (3.12)

Next, let u;, be a piecewise linear interpolation function of # on S%, with
u,(P;) = u(P;) for all element nodes P, on §* We have
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LemMa 3. Suppose (2.15) holds; then

]

luy = Tyllmesn <K HT e Byl - (3.13)
Proof. We can, as in |4/, obtain the following inequality from (2.15):

1
— 2 .
Ty =y llinen < K, Tguh T Uy

,2,””"«”). (314)

where [, is the interior boundary of S”. Note that the norm on the right of
(3.14) is on I, while the norm on the right of (3.13) is on [,.

Let P, = u, — i,. Since the distance between [, and 7', is, at most. o(h?),
we have

2 i p g2 -~ 2 ? Cone
iphimfr”) 1 Pulaa S KA ™ Py

| CHCE
. t (’1 :
=2K,h i Py =Py i
| H VR )
2R Pylyrs | Py
S8  Phlppogr gy L T (3,15
' (s én i 11:‘“”"»?' (3}3}

For the piecewise linear function P, we have, as in the proof of (3.10), that

apb,

1
<K1'W”Ph”m(§’;)' (3.16)

I én laroer
By combining (3.14)-(3.16), the following inequality is obtained:
X! <K (2bx + ¢), (3.17)

with x = | Pyllyen b= 1" [ Pylyur,» and ¢ = | Pyljur,,/h. Hence, we obtain
the following bound on x:

x< Kb+ b+ )7

b 1y
HPthuﬁfp <K, ["?m + (;? + 7) J Pyl
<K ]Ph‘ll”(i'()}' (3.18)
with K, a bounded constant independent of 4. This gives inequality (3.13) by
noting P, = u, — ii,.

640,392 4
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Let us now prove Theorem | along the lines of Lemma 1.

The bound on the third term on the right side of {3.1) has been estimated
in Lemma 2. As for a bound on the second term, we see from the Schwarz’s
inequality and Strang and Fix |7.p. 169/ that
g ’ A.‘g {jwh - ﬁ\ux((’uh,);\’ + u,\‘((uh)_v!} ;

o ‘

R

s K, i!f‘mm&';x t El“'m'u.{'fp] i wn“llms“'qu
<K,

1.2 - ; i ’
N Fmeaen # ubsn ] oy, (3.19)

where K, is a constant independent of A.
The bound for the first term is rather complex. Since @,. defined by
{3.11), belongs to V¥, we have

inf iiu - l‘k!éh é ila - (ah”h
zy,el'}!

<, 4/1,&’;) + ”R\‘HHH.\;)‘ (3.20)

with the remainder R, = u —f\.
We see from Lemma 3 and the piecewise linear interpolation function u,
of u that
i~ ﬁh”l/‘(ﬁ’{) <u-- Upliprosm + ey, — 1, inuv(';;

o [ .
<h [ ggaegm + PR [ty = Hylypor - (3.21)

We note that the piecewise linear interpolation function i, satisfies (3.12):
then

Py — oy <1U— g oy + U — Wylney + 10— Slioay
- 2 2LF i
<K A ju g + h !f\‘|112u'[.)i + IR Lo o
<K, |2h° !1‘1;12({'“‘ + 1R g |+ IR oy - (3.22)

where in the last step we have used the inequality

. <
M\f‘%i{?(r,,} = lu— Riylyar,

& Win!um + Ryl 0"

Hence, the bound on the first term in (3.1) is given (from (3.20(3.22)) by

Finf ffu—vylly <K, Bh iuluuﬂ"g) + “R‘\’HHI(SEJ +h' ey

k K L

l I
+ PALE [Ry o + R 5R:\iulu;,>( : (3.23)
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Finally, inequality (2.17) is obtained from (3.1}, (3.5). (3.19), and {3.23).
This completes the proof of Theorem 1.

The uniformly V9-elliptic inequality (2.16) can be proved (as in [5]). so
the conditions in Theorem | are satisfied.

Remark., Suppose the common boundary [, is a curve instead of a
circle. After some calculation, it can be shown that

| L2 - 2m
Wy ‘/1211‘(,) <KL,

with #1 a real number >2. Hence, Theorem 1 still holds even for a curved
common boundary /,, but with the general bound K, (A°L™+ k™)
Eufén ey, instead of K\(h*L? + k) [éufén|,y,. , in (2.17).

4, THE SiMPLE CASE
In this section, we consider the simple case where the functions in (2.1}

satisfy
J = const and ¥

i

0, (x,p)ES,. (4.1)

Here. the essential assumption is that f=const on S§,. In facu for a
nonhomogeneous equation fd4u =/, with a constant f on §,, a particular
solution u* can be frequently found such that f4u* =/ on S,. Hence. if we
define a new variable v=wu—u* Eqg. {2.1) reduces to a homogeneous
equation f4v =0 on S,(i.e., f=0o0n S,).

The assumptions (4.1) mean that Laplace’s equation holds on S,

Au =0, (x. JES,. {4.2)

Its solutions can be expanded as
I S
u(r ) =ay, + \ (@ cos 10 + by sin i6) (é—) +R,. (4.3)
1.z \ !
where the expansion coefficients are

~T

| ~ {
5o wROd. G=—| wROcoslfds L.

a, =

T

- | I
bi=—| uR.O)sinifds. 1>, (4.4)

and the remainder term is

i
R, = Y
1

{
(@, cos 16 + b, sin 1) (%) . (4.5)
{

[
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Hence, the following admissible functions are better than those of (2.14):

1 !
o=l =a,+ \_ (a,cos 10 + b, sin 1) (;;) . (x.meSs,.. (4.6)

i

with the unknown coefficients a, and b,, the total number of which is only
(2L + 1); this is less than (2L + 1)(L + 1). the total number of unknown
coefficients in (2.14).
Because the admissible functions (4.6) satisfy Laplace’s equation (4.2). we
find from Green’s theorem that for u € V} and v € V9.
cu

!“ Bluce +ue =4 v (4.7
© S, ’ ‘I‘,(‘”

Consequently, the combined method (2.9) can be written in the simple form:
aur vy =f(. (4.8)

where

au’

v (4.9)

an

Gy ey =N [ Bl e B |

i

and

Joy=X| foand w =f=ul.
ERY
The method (4.8) is concerned only with S* and I',. where it is somewhat
like the coupling method of Zienkiewciz er al. |10}. However, the latter
method cannot be used for the general equation (2.1}
Using the orthogonality property of trigonometric functions and the fact
that [, is a circle, we obtain

- du, " . - i
Bl g N Kayd, + b5, (4.10)
.r‘"” cH I‘—hl
for u, =f, and
I‘ - r !
p=d,+ N (d cos 10 + b, sin 16) (ﬁ) . (411)

[

Hence, the algebraic system (2.24) is immediately obtained from (4.8). where
the admissible functions satisfy the constraint conditions (2.8), i.e.,

I3
vi(R.0)=ay+ N (a,cos 0+ b sin b)) (4.12)

[
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In a similar manner, there is also a simplification of the original form (2.9)
of the combined method with the admissible functions (2.14).

THEOREM 2. Assume (4.1) holds, and suppose that all the conditions in
Theorem 1 hold, except for (2.14) which we replace with the condition (4.6).
Then. the solution uf of (4.8) has the error bound

12
"l ]

L éR,

u—uifll, <K, )h ‘uinl(ﬁf) + [Rl,uwm ’ n

+ /’llyZ f‘[[“t.j“;"’) + u‘HHA.\"’]’)I
o N U 2
+(h.L~+h}") T fh}~ M‘IIJH‘.I
L on Lirogr g
t 3.2 I
+F‘RI"”.,“~“,+h ‘Rllll‘(l‘,JS' (4.13)

Proof. Theorem 1 clearly holds for the particular case in this section.
Then. from a comparison with {(2.17), we see that Theorem 2 holds provided
that

) R, e ,
‘JRI HHI(.\\) & (l + R) ‘RI. ‘H“u‘”» ‘ : ’ . (\4' ]4)
: 0oy

cH

We now prove (4.14). With the orthogonality of trigonometric functions,
we have the inequality for the norms |-/, and \-‘I,",,(sf, of R, given by
(4.5).

o . Joma@ + b))
\R/,);lﬂ(s;) =R \_
(T 252

<SRN ma@ +b)I=R R, s, (4.15)
1

Since the remainder R, also satisfies Laplace’s equation. then it follows from
Green’s theorem that

R,
on

R, ‘;?I'm‘zr = . . R,
"y

PRI

o]

< lR,_i,,(.“-”, (4.16)

HO )
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Hence. we see from {4.15) and (4.16) that
IR, fliuts:; = ‘er.f;ﬂus,» IR Jiris
SRR iy
LU R Ry f}% . (4.17)
This completes the proof of Theorem 2.

Suppose that # has bounded partial derivatives of order ¢ {23) on .
Then, we have the bounds (2.21). {2.22} and

] 'i
Rk (1.18)

CH

This leads to

CorovLLarY 2. Suppose that all conditions in Theorem 2 hold. and u has
bounded pariial derivatives of u (23) on I',. Then. if the integer . is chosen
as in (2.23). the error estimate (2.18) still holds.

In Theorem 2 and Corollary 2. the bounds of the norms are concerned
only with §% and 7,. This is an advantage for the analyses of singularity
problems where there is only a little change in the form of admissible
functions in §, (sec next section).

5. SINGULARITY PROBLEMS

The combined method ((2.9) or (4.8)) is very efficient for solving the
singularity problems. Here we consider two examples.
3.1. The Crack Problem
For simplicity, Laplace’s equation
Au =0, x,ye s, {3.1)
is considered; the boundary conditions are
uly, =g (5.2)

and

U

— i =g, 5.3
an |, & (5.3)

Let I'=F,\JF, and let a crack lie on the x axis (Fig. 2). Suppose that the
boundary condition on the crack is given by

ulp=0 {(r=0,x20) (5.4}
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v

xv

Fis. 2. The crack problem.

There exists a singularity at the origin which is contained by S,. Using the
method of separation of variables, the solution u|, can be expanded as

i n 12y ; .
. e |
U= "\_1 a, (7{) sin (n+~é~) 6+R,. (5.5)

with the coefficients

L

a,=| u(R.0)sin(n+%)80db.

<4
and the remainder

u(: r n(1/2) 1
R, = N a, (?{) sin (n + -,;) f, r.es,. (5.6)
n 441 . “

Hence, the admissible functions should be chosen as

1,’ F n+{i/2} l
H=l=2Y a, (};) sin (n+7)6, (r.OH)ES,, (5.7

n=1
with unknown coefficients a,. Then the solution of the crack problem (5.1)-
(5.4} is easily obtained from (4.8} with the admissible functions (5.7} instead
of (4.6).
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5.2. Motz's Problem

Motz’s problem is another typical singularity problem which involves
Laplace’s equation (5.1) on a rectangular domain § (-1 < v 1L O 1)
with the following boundary conditions |8. 9]:

ou | cu cu <o
bl = : = 1 = (), (-‘.8’
S P O & I
Ui pny o= 0, (5.9
and
., =500, (510}

There is a singularity at the origin, which is contained by S, (Fig. 3). The
solution on §, is

Leih D

u:id, (—[;~) cos (“/"r' f;)(/Jr-R,. r.he S,. {(51h

I 0
with the coefficients 4, = ;iA(ﬁ u(R. #ycos{l + ) 4. and the remainder
IR O L

g o
Ri= X a (}Q) cos (1-;/?) 0,

Then, we take the admissible functions

I fagl
A=l = }__ a, (?% ) cos (1 P ) o (r.4he S.. (512
Ioa \ : A A
v i
1
R
S, r
e .
-1 A ) 1, 1 X

Fi. 3. Motz's problem.



COMBINATION OF RITZ-GALERKIN AND F.E.M. 149

TABLE |

Numerical Solutions of Motz’s Problem

(v, 0 (—3.3) (0.3 (.3) ¢ Lol 000 (Ao oo
Combined
method 784732 141133 243367 33.5478 331192 833686 A5

Thaitcher’s

method 78.24 140.9 2433 33.37 52.89 83,20 7601
Wand P's
method 9] 78.56 141.6 2438 3339 5319 83.67 Thdl

with the unknown coefficients @,. The numerical solution of Motz's problem
is then obtained from (4.8) with the admissible functions (5.12).

6. NUMERICAL EXAMPLES

Two numerical examples are given in this section.

6.1. Motz’s Problem

The division of §,, shown in Fig 3. is similar to the infinite grid
refinement method of Thatcher [8], but there is a nonuniformity in the
distribution of the element nodes on the circle /7, of radius R =13 The
numerical solution calculated by the combined method with L. = 4 is listed in
Tables I and II. For comparison, the numerical results of Thatcher |8] are
also listed in Tables I and 11, from which we see that the solutions calculated
by these different methods are in approximate agreement,

TABLE I

The Coefficients a, for Motz's Problem

! 0 I 2 3 1
Combined
method 400.665 87.7679 17.6683 --9.66311 1.79988
Thatcher's
method 400.8 88.0 17.3

Symm’s
method 401.2 87.2 —
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The combined method (4.8) is relatively simple to use but. in Thatcher’s
method, an eigenvalue problem must first be solved for the case shown in
Fig. 3.

We notice that only five unknown coefficients, a,~a,. need to be
calculated so that a saving in the cost of the calculation is possible in the
combined method.

6.2. 4 Common Problem

Consider Lapalce’s equation (5.1) on a semicircular domain § (0 < r < |.
0 < # < 7) with the boundary conditions (Fig. 4)

[

= | =0 and u, ,=co" 0LH<Ln). (6.1)
ity .
The true solution is
I
ulr, )= a, + \_ ar'cos 1 O<rg (6.2}
[
with the coefficients
I
a(; —_ (eﬂ ) 1 )- {63}
K
g 1 [{(—1) ™~ 1] [=1) 6.4)
(I femal .__WM_.(.._T__V — o3 —— :’ . .,
T+ re f: (6.4)

Hence. the admissible functions on S, are chosen to be

i
So=a,+ N a,r' cos b
[

The linear finite element method is used in S, with the triangulation shown
in Fig. 4.

A
X

~1 ~0.8 O 0.8 1

FiG. 4. The domain subdivision for the common problem.
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TABLE I

The Numerical Sotutions of Egs. (3.1) and (6.1)

Maximal
{x;.1) 0.8.0) {0.4.0) (0.0) (-04.0) (-0.8.00 (0.0.4) (0.08)  Error

Combined
method 2,116 4,347 7.038 10723 16,738 6.624 5516 0,144

Finite element
method 2111 4342 7038 10.732 16,769 6.623  S.511 0.17s

Exactsolution 2.117 4343 7.048 10,700 16594 6616  35.509 -

For comparison, the solution is also calculated by the linear finite element
method on the whole solution domain S, where the triangulation on S, is the
same as in Fig. 4, and the triangulation on S, is similar to that on §,.

The solutions obtained by the combined method with L = 16 and the finite
element method are listed in Table 1T and 1V, It is shown in Table Il that
both solutions are in approximate agreement. However, there are 42 and 226
unknown quantities to be calculated in the combined method and the finite
element method, respectively, Therefore, the combined method is beneficial
cven for a common boundary value problem.

CONCLUDING REMARKS

From the above analysis and numerical examples, it is clear that the
combined method described in this paper should be used for singularity
problems. Moreover, we also recommend that the combined method be used
for solving the general boundary value problem if there exists a large
subdomain where the solution is sufficiently smooth.

TABLE 1V
The Calculated Coefficients @, for Egs. (5.1) and (6.1)

! 0 i

o
%)
Py
sl
o
=

Combined
method 7.058 -7.702 2.837 ~—1.563 0.859 0422 .278 a.17e

Exact
solution 70438 ~7.684 2819 —1.637 0.829 0.381 0.227 0.055
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