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I. INTRODUCTION

It is well known that elliptic boundary value problems can be solved by
several numerical procedures, such as the Ritz-Galerkin method, the finite
element method, the finite difference method. and the conservative difference
scheme. However. it appears that there has been little or no work done on
combining these methods. Of course. each of these methods has its
advantages and shortcomings. The use of combined methods is particularly
important in problems with complicated boundaries or boundary conditions.
or in problems with solutions that are not smooth enough or have
singularities, or in problems with unbounded solution domains. In such
cases. a single method is often ineffective. In this paper we study a combined
method which has been widely used.

In ] 973. Strang and Fix 17, p. 1351 mentioned the idea of combining the
Ritz·-Galerkin and finite element methods. In 1977, Zienkiewciz et al. 1101
gave a systematic presentation of a combined method based on the boundary
integral method and the finite element method. which cannot. however. be
used for general nonhomogeneous equations.

In this paper. we introduce another combined method. which is noncon·
forming because the admissible functions are continuous only at the element
nodes on the common boundary of both methods. However, it is usually the
case that nonconforming effects are of little importance to the numerical
solution obtained. This method has the advantages that it is valid for the
general nonhomogeneous elliptic boundary value problem. and is reasonably
simple to describe.
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2. THE COMBINED METHOD

Consider the two-dimensional model problem.
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(7 (0 aU')- fl-
8x 8x.

u=g.

(x.y) E S.

(x,y) E r.

(2.1 )

(2.2)

where S is a convex polygon with boundary r. the functions fl and I are
sufficiently smooth, and fl = fl(x, y) ) flo > O. for some constant flo. The
model problem. (2.1) and (2.2), can be expressed in a weak form

a(u. 1') = I(u).

where the true solution u E H~{S).

(2.3 )

a(u.v)= r fl(u,1',+u,.u,).
. s

I(d= rlv,
-"

and the spaces are given by

H11,(S) \1', v,. v, E L 2{S). I'll = gf.

H~(S) = 11'.1',. vy E L 2(S), vir = Of.

(2.4 )

(2.5)

Let S be divided by a circle To into two subdomains: a circular domain S 1

contained in S and another domain Sl such that S=SIUS2' Two quite
different methods, the linear finite element method and the Ritz-Galerkin
method, are used on SI and S2' respectively. Let S I be subdivided into small
triangular elements Ai of maximum width h, and let the nodes of those
elements adjacent to S 2 lie on To (Fig. 1). The admissible functions for both
methods are continuous only at the element nodes on To so that this
combination is nonconforming. This combination of the Ritz~Galerkin and
finite element methods has been discussed in Li and Liang IS! for the case
where common boundary To is piecewise straight.

In order to simplify the method. isoparametric elements are not used;
therefore the triangularized domain .57 only approximates S I (Fig. I). i.e ..

(2.6)

The noncoincidence of .57 and S I may cause some difficulties; its effects on
the numerical solution of the model problem will be studied in this paper.
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FIG. l. The domain subdivisions in the combined method.

LeI the admissible functions for the combined method be

\

=f~ = \' d,riJ.
,.~ - ,(

I ()

and

(2.7)

(2.8)

where 1'1 are piecewise linear interpolation functions on the triangularized
domain S7. 1¢I f are complete, Iinearly independent basis functions. the d I are
unknown coefficients. and Pj are the element nodes on r o. The space of
functions 1'/1 satisfying (2.2) is denoted by V;;; the space of functions l' h

satisfying 1'/1 II' = 0 is denoted by V~.

The combined method based on the Ritz-Galerkin method and the linear
finite element method requires one to find an approximate solution u: E Vi;
such that

where

VI' E V'~. (2.9)

and

G/1(U, v) = ~ r /3(u<L'x + uyv,) + I /3(u,v, + u,v,.).
I -a, ·S,

l(v)=~1 11'+1 Iv.
i ~'.1 i .' ,c",' 2

(2.10)

(2. II )
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Note that the admissible functions vk are not continuous on To. except at
the nodes Pi' hence

v: 1:. H~(S) and (2.12)

U = <. \- <. (- 'e b- . 'e) I T () R
f () /alO+;-1 ali cos I + Ii Sill I \ , r + y'

In considering the above method. the following questions have. naturally,
occurred to us:

Are the effects of (2.12) severe enough to prevent us from getting a good
numerical solution?

Is the approximation (2.6) permitted?

What are the error bounds for the numerical solution of (2.9)?

We now investigate these questions.
The true solution u on S2 can be expanded as

(r,e)ES"

(2.13)

where the Tf(r) are complete polynomials of order I. ali and bli are expansion
coefficients. and R v' is the remainder. Hence, it is reasonable to choose the
following functions as the admissible functions on S ,:

(2.14 )

where ali and bli are coefficients. To simplify the analyses. we assume that
the subscripts I and i of the coefficients ali and bli are both bounded by some
integer L.

We define a norm on Vi: as follows:

II V Ilk 1I1 v 11;/1(.51) + II v 1111(S2) 11!2.

where 1I·IIHI(s,) is the Sobolev norm 16]. Then Vi: is a Hilbert space, and the
norm II v Ilk is' also a measure of the mean value of v and its generalized
derivatives. We shall assess the error of the solution obtained by Eq. (2.9). in
the norm II· Ilk .

We give a bound on the error of the solution in the following theorem: the
proof of which is deferred to the next section.

THEOREM 1. Let the admissible functions Iv be given by (2.14), and v I

be piecewise linear interpolation polynomials on 87 where the following
inequality is assumed:

for lil.d; is adjacent to To f. (2.15 )
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Here the hi are the maximum widths of the elements adjacent to rIP h is the
maximum width over all elements, and K o is a bounded constant independent
of h and hi'

Moreover, suppose that ah in (2.9) is uniformly J1-elliptic, i.e., there exists
a positive constant a independent of hand L such that

(2.16)

With these assumptions, the solution ut of (2.9) satisfies the following error
bound:

(2.17)

where As7 = SI; 1\ S,. au/i'n is the normal derivatiue on Ill' and K j is a
bounded constant independent ql' hand L.

Throughout this analysis K l represents a generic bounded constant with
possibly different values in different contexts.

The first and second terms on the right side of (2.17) are the error bounds
from the linear finite element method on S7 and the Ritz~Galerkin method
on S 2' respectively. The third term is the error bound from the appro x
imation (2.6), but it is at most O(h'/') because Meas(AS';)=co(h') and. in
general. there exists the bound

max 1.1'1 + Iu,i t iU, (~Kl'
~x.

The rest of the terms in (2.17) are from the nonconforming elements on I".
Among these terms, the term h'L'lrJu/r'nlll"IT I is the most important. In

"order to get an error bound of the form

(2.18)

the inequality

(2.19)

must hold. Consequently, an important problem for the combined method
(2.9) is how to choose the integer L for the Ritz-Galerkin method on S,.

Inequality (2.19) usually holds because we are frequently able to obtain a
valid expansion in (2.13). For example, suppose that the solution on S, has
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bounded partial derivatives of order /.l (~3). Then, we have the following
bounds on the remainder [2, 31:

(2.20)

(2.21 )

and

(2.22)

Consequently, the error estimate (2.18) is obtained from Theorem I provided
that the following optimal value for L is chosen:

L = L
upt

= O(h 3 2U)

In this case, inequality (2.19) naturally holds.

(u ~ 3). (2.23 )

COROLLARY I. Suppose that all conditions in Theorem I hold, and u on
S2 has bounded partial derivatives of order /.l ~ 3. Then. if we choose L as in
(2.23), the error estimate (2.18) holds.

From (2.9). we obtain the algebraic system

Ax == b. (2.24)

where x is an unknown vector with the elements (vt)li' ali' and bli . b is a
known vector, and the matrix A is positive definitive, symmetric. and sparse.
Hence. the numerical solutions of (2.24) or (2.9) are easily obtained.

The total number of coefficients ali and b li is (2L + 1)(L + I), which is at
most O(h ') (see (2.23) or (2.19)). This is much less than O(h 2), which is
the number of the element nodes in the finite element method. Thus the use
of the combined method can result in significant savings. Obviously, the
larger the subdomain S 2' where u has bounded partial derivatives of order
,u ~ 3, the less the cost of the calculation in (2.24).

Theorem 1 is still valid for arbitrary complete polynomials iTI(r)i. In
order to insure a stable solution to (2.9). we should require that the set TI(r)

be orthogonal. For example, we may choose TI(r) to satisfy

.R

I rT,(r) Tm(r) dr = 0,
00

=1.
with R equal to the radius of To.

l*m,

I=m.
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3. THE PROOF OF THEOREM

Let us first prove several lemmas.

LEMMA 1. Suppose that the uniformly VJ.-elliptic inequality (2.16) holds;
then

(3.1 )

where

Proof When (2.16) holds, the basic estimate for the error bound of
nonconforming elements has been obtained by Strang and Fix 17, p. 1781
and Ciarlet 11, p. 186]

Ilu-u:llh~KJ1 inf Ilu-L'hllh+ sup If(wh)-ah(u,wh)I/llwhllhf. (3.2)
l'hEV~ ({)hEJ-·~

By applying Green's theorem and (2.1), we see that

where OSI and OSl are the boundaries of Sl and Sl' respectively. Since the
normal flow fJ(au/an) on To is continuous, it follows from Schwarz's
inequality and w h 11' = 0 that

W/I )' Ii. (3.4)

Consequently, inequality (3.1) is obtained from (3.2 )--(3.4).
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LEMMA 2. Let v I in (2.7) be piecewise linear interpolation functions on
S~, and Iv be the functions (2.14), then

(3.5 )

Proof We notice that the functions w h (E:Vi:) are continuous on the
nodes Pj E To. so that

A piecewise linear interpolation function with respect to 8 is constructed as
follows:

H(O) = wh(R, OJ + ~)h(R, e~+ 1)_ ;h(R, e)
.1+ 1 .I

(3.6 )

where (R, f)i) are the coordinates of the nodes Pj on To with Bi + 1 > Bi • and R
is the radius of the circle To. Then we have

I.r (wI, - Wi;Y JI
/
2~ IJ (w~ - H(B»2 fi2 + lJ (w il - H(8»2 r'. (3.7)llo lIn J In J

For the piecewise linear interpolation functions H(e). we have the
inequality (Ciarlet II i)

r (w;-H(f))2~klh4IwlI+i;12(r,,).
"1'"

(3.8)

By applying W ~ =Iv. (2.14). and the orthogonality of trigonometric
functions. after some calculations we find

. 't"12
W

+ ' 2

+ 12 _I (( II)
leVhl/l(lol -.. ~e2.

1 I} . (1

= L 4 I (wn 2 {:, K I L 4 II Willi h.
·'1'0

(3.9)

where in the last step we have used the imbedding theorem of Sobolev 161.
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Then, since
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= ai + bir cos fJ + cir sin e. (x,y) E J i .

where ai' bi' and c i are constants, we find that

I IWh- H(fJ)1 2~ K1~ hi (' I (~::W,h )~ R de
. 1 0 i • ai' r(} ,

.0

=KIR2~hil' '(bicosfJ+cisinO)'RdfJ
-°i

(3.lOl

= 2K,R' \' h4 R(fJiJ 1, Oi) r [(',{)~".,' 11)" +. (',' ('~j,)h)' . ,I
i ! MeaS(L1 i ) .'j, ex" ('I' ,

~ K,h' Ilwhllh.

where K, is a bounded constant independent of h, and in the last step we
have used the Sobolev imbedding theorem and the inequality

R«()i'l ()i)/Meas(A i )( KJh i •

for regular triangular elements /1 i'

Inequality (3.5) is then obtained from (3.7)-·(3.10).

For estimating the bounds of infrE1 illl Chilh in Lemma l, let us
construct an auxiliary function ;\"11 E vt'in"the following way:

(x.Y)ES~;.

(.v,ylES ...

(3.11 )

where Iv is the approximate expansion of u (see (2.13)). and il/t is also a
piecewise linear interpolation function on ,~~' but its values on the element
nodes Pi of ,~~ are given by:

Uh(Pi ) = u(Pi ),

=J~(Pi)'

PiEro'

PiEro- (3.12)

Next, let uh be a piecewise linear interpolation function of u on S~', with
uh(P,) = u(P,) for all element nodes Pj on S~. We have
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LEMMA 3. Suppose (2.15) holds; {hen

141

(3.13 )

Proof We can, as in /41, obtain the following inequality from j2.15):

(3.14 )

where /'0 is the interior boundary of S~. Note that the norm on the right of
(3.14) is on /'0' while the norm on the right of (3.13) is on roo

Let P h= Uh - iih' Since the distance between 1'0 and r o is, at most o(h2),

we have

IPhlifO{f,,)~iPhliIO(/,,);;;;Klh21.:C.(PIY
I (-I II"U"I

, I ('
2K J h' I Ph'. Ph

I ('/I 11"11',,)

(3.15)

For the piecewise linear function Ph we have, as in the proof of (3.10), that

By combining (3.14)--(3.16). the following inequality is obtained:

x 2
~ K j (2bx + c),

(3.16)

(3.17)

with x = IIPh II 1l1 {S7)' b = hl/2IPhlfl1llI'ol' and c = IPh li,o'l',ih. Hence, we obtain
the following bound on x:

i.e ..

IIPhllf{11\:7)~Kj lh l
!2+ (h++)1.2 J1Ph !l!o(/,,,1

;;;; Klh~Ii2IPhlflOll'o)' (3.18 )

with K 2 a bounded constant independent of h. This gives inequality (3.13) by
noting Ph=Uh~iih'
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Let us now prove Theorem 1 along the lines of Lemma 1.
The bound on the third term on the right side of (3.1) has been estimated

in Lemma 2. As for a bound on the second term, we sec from the Schwarz's
inequality and Strang and Fix 17. p. 1691 that

I lfw" 131 u,(w")r +- ur(w"L II
·J·\:1

~ Kl llfl/lo(1{:I{1 -t lul/llu{:'pl:lw"II'fll\{:':'

~ K2h'21Ifi/l<lu{:lp + ull/!<\.{:ipl i!w"I,,< (3.19 )

where K 2 is a constant independent of h.
The bound for the first term is rather complex. Since iV Ii' defined by

(3.11), belongs to Vr we have

( 1111 - Ii" 11/ +IIR,IIIII,s" (3.20)

with the remainder R, = 11 --j~ ..
We see from Lemma 3 and the piecewise linear interpolation function II"

of u that

(3.21 )

We note that the piecewise linear interpolation function ii" satisfies (3.12):
then

lu" ~ u"luoir,,) ~ lu - u"l"o(rnl + I], - u"llIo(ln) + IU -},II/Oil"l

;:;; K,l h2 IulJJ'lr,,1 + h21!,11I211'uI 1+ IR,I/l"11 "I

~ K112h'lul/l2Hol +h'IR,11l1ilnll + iRYII/!>(!',,). (3.22)

where in the last step we have used the inequality

1],\,nrOI lu - Ryil/lilol

Hence, the bound on the first term in (3.1) is given (from (3.20)-(3.22)) by

info II u - v"ll" ~ K 1 II h \u1 1l 2cs11 + IIR,IIIlI(.\21 + h
12

/li Il 2I/ u'
l'h E ~ It

(3.23 )
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Finally, inequality (2.17) is obtained from (3.1), (3.5). (3.19), and (3.23).
This completes the proof of Theorem 1.

The uniformly ~~elliptic inequality (2.16) can be proved (as in IS\). so
the conditions in Theorem 1 are satisfied.

Remark., Suppose the common boundary To is a curve instead of a
circle. After some calculation, it can be shown that

with In a real number >2. Hence, Theorem 1 still holds even for a curved
common boundary To, but with the general bound K I (h

2L lIl -+ h3
,)

"', ,n I . d fR' ('h'L' I"')'" j" I • (217),r'u/en 1/°11',,1 mstea 0 I.'· + l' " iou on ill "I 1',,) In . .

4. THE SIMPLE CASE

In this section, we consider the simple case where the functions in (2.1)

satisfy

(J =const and /=0, (x,y)ES,. (4.1 )

Here. the essential assumption is that fJ const on S,. In fact. for a
nonhomogeneous equation (JAu =f, with a constant (J on S" a particular
solution u* can be frequently found such that (JAu* =f on S~. Hence. if we
define a new variable v = u u*, Eg. (2.1) reduces to a homogeneous
equation (JAl' °on S2(i.e../=°on S,).

The assumptions (4.1) mean that Laplace's equation holds on S,

Au 0, (x,y) S2' (4.2)

Its solutions can be expanded as
r I

u(r, e) = a o + ~ (iii cos {f) + h, sin W) (!-) + R" (4.3)
, I,R

where the expansion coefficients are

1 .T

iio = 2n J ." u(R, e) de.

.. 1,-'"
b, = -I u(R, e) sin ff) de,

n , __ ."

and the remainder term is

1·'"
ii, = --I u(R, e) cos ff} de,

n., ."

{> I,

{> L

(4.4 )

U. (' r )'RJ = ~ (ill cos If) + hI sin tel - .
, 'I I R

(4.5 )
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Hence, the following admissible functions are better than those of (2.14):

J, r ) I

I, =.0 = a o + ~ (a l cos Ie + hi sin W) (If .
I I

(4.6 )

with the unknown coefficients a l and hi' the total number of which is anI)
(2L + I): this is less than (2L + I)(L + I), the total number of unknown
coefficients in (2.14).

Because the admissible functions (4.6) satisfy Laplace's eL]uation (4.2), we
find from Green's theorem that for u E: V: and t· E: V~"

(4.7 )

Consequently, the combined method (2.9) can be written in the simple form:

(4.8)

where

and

(4.9)

/(1')= \' 1'/1'
i ".).1

and u·=I,=ui,.

The method (4.8) is concerned only with Sl; and 1'0' where it is somewhat
like the coupling method of Zienkiewciz el al. [10 I. However. the latter
method cannot be used for the general equation (2.1 ).

Using the orthogonality property of trigonometric functions and the fact
that To is a circle, we obtain

for uh =F and

I . I

V = iio + '\' (iii cos Ie 1- hi sin Ie) (-"-) .
I I R

/4.10)

(4.11 )

Hence, the algebraic system (2.24) is immediately obtained from (4.8). where
the admissible functions satisfy the constraint conditions (2.8), i.e ..

J

vJ(R, e;) = ao+ ~ (a l cos Ie; + hi sin Hi;).
I I

(4.12)



COMBINATION OF RITZ-GALERKIN AND F.E.M. 145

In a similar manner, there is also a simplification of the original form (2.9)
of the combined method with the admissible functions (2.14).

THEOREM 2. Assume (4.1) holds, and suppose that all the conditions in
Theorem 1 hold, except for (2.14) which we replace with the conditio II (4.6).
Then. the solution u: of (4.8) has the error bound

Ilu - u:11 11 ~ K1 I/ h IUI II '(\:7) + IIRrlillilIlIl II r~, I j 12len Il(J(/ II)

+h 1'llflilllu,\:I,'1 + U IlIlu\:I{) I

" I" 'I r'u I I'+(h"L'+h") -;;- +h" ul//:/I"I
! (,/1 IIIII( 1'

0
J

(4.13 )

Proof Theorem 1 clearly holds for the particular case in this section.
Then. from a comparison with (2.17). we see that Theorem 2 holds provided
that

(4.14 )

We now prove (4. 14). With the orthogonality of trigonometric functions.
we have the inequality for the norms . IIIIIIS,I and I· !;"(\,I of R, given by
(4.5 ).

'IR,.I;'"IS,1 =R' '\'
( r + I

n(6; + h;)
---_.~

21 + 2

~R' '\' n(6;+h;)/=R'IR,I;{lls:I'
/ r t I

(4.15)

Since the remainder R, also satisfies Laplace's equation. then it follows from
Green's theorem that

rRR __I

, an

(4.16)



146 ZI-C!\I II

Hence. we see from (4.15) and (4.16) that

II Rr. ili"ls,1 -=i R,.I;/I1;s,1 + IR I i;,li\l
~ (I + R') iR, ,,'I'IS,'

f::R, ". (:11 II'\! ,I'

[4.17)

This completes the proof of Theorem 2.

Suppose that u has bounded partial derivatives of order ,0 1;:3) 011 I".
Then. we have the bounds (2.21). (2.22) and

This leads to

?R,
('n

.. T 1
,~;f(, I." y.

;fl)l[',o i

IS)

COROLLi\RY 2. Suppose thaI all conditions in Theorem 2 hold, Qnd Ii has
bounded partial derivatives afp (~3) 011 Ill' Then. if the ill1egrr " is chosen
as in (2.23). the error e~'limate (2.18) still holds.

In Theorem 2 and Corollary 2. the bounds of the norIll~ are concerned
only with 57 and To' This is an advantage for the analyses of singularity
problems where there is only a little change in the tOrm of admissibk
functions in S2 (sec next section).

5. SINGULARITY PROBLEMS

The combined method «2.9) or (4.8)) is very efficient for solving the
singularity problems. Herc we consider two examples.

S. I. The Crack Problem

For simplicity, Laplace's equation

ilu = 0, (x.y)ES, j 5.1)

is considered; the boundary conditions are

u11, = g" (5.2)

and

(5.3 )

Let l' = 1'1 I..,) 1 2 and let a crack lie on the x axis (Fig. 2). Suppose that the
boundary condition on the crack is given by

ulr =~ 0 (.1' = O. x;? 0). (5A)
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FIG. 2. The erack problem.

r
x

There exists a singularity at the origin which is contained by S 2' Lsing the
method of separation of variables, the solution 11 I,. can be expanded as

I, r" I II, 2' .' I '
11= \ a (-) stn(n+,-)e+R

,;-, 1/ R, ,2 I.'

with the coefficients

a" (11(R, e) sin(n + ~) ede,
• (I

and the remainder

(5.5 )

(
r)"'(lil) ( I)

R 1 = ~ an R sin n + 1" e,
n 1..-1 I ". ~ /

Hence, the admissible functions should be chosen as

(5.6)

I., (r )'HO!2) . (' I)
'\ a - stn n + - e
~ n R 2 '
n=1

(5.7)

with unknown coefficients an' Then the solution of the crack problem (5.1}­
(5.4) is easily obtained from (4.8) with the admissible functions (5.7) instead
of (4.6).
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5.2. Motz's Problem

Motz's problem is another typical singularity problem which involves
Laplace's equation (5.1) on a rectangular domain S (-1 ~.\ ~ 1.0 .I' ~ I).
with the following boundary conditions 18. 91:

and

(in

(·u

en x
-- = 0,

(11 , !l !',X ,0

II i\' Ii r,., n=' 0,

11.\ i = 500.

(5.8 )

(5.9)

(5.10)

There is a singularity at the origin, which is contained by S 2 (Fig. 3). The
solution on S 1 is

U= ~, ii, (~~f'(J "cos (rt -~) (J R,.
'Ii R , ,-

(r,OlES... (5.111

with the coefficients ii, !l II(R. (j) cosU +}) 0, and the remainder

R
f

= \' ii, (-~)i.(t 1i cos (I + ~.) O.
, I' I • R ,-

Then, we take the admissible functions

cos (I
\

) 0.
2

(S.I2)

y

o x

Fir;.:l. lvlorz"s problem.
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TABLE I

Numerical Solutions of Mop's Prohlem

(~. ~ ) ( ,', . ,',) (0. ,', ) ( ,I, ..',) (.',.0)

78.4732 141.133 243.567 33.5478 5.1.1192 83.5686 7h.3152

78.24 140.<) 2433 .13 ..17 52.8<) 83.20 '6.01

78.56 141.6 243.8 33,59 5.1,19 ~3.h7 7/,AI
\V and P\
m~thod IlJ I

Combined
method

rhateher's
method

with the unknown coefficients a /. The numerical solution of Motz's problem
is then obtained from (4.8) with the admissible functions (5.12).

6. NUMFRICAL EXAMPLES

Two numerical examples arc given in this section.

6.1. MOlz'S Problem

The division of S I' shown in Fig. 3. is similar to the infinite grid
refinement method of Thatcher 181. but there is a nonuniformity in the
distribution of the element nodes on the circle 1 0 of radius R·"" t The
numerical solution calculated by the combined method with L = 4 is listed in
Tables I and II. For comparison. the numerical results of Thatcher 181 are
also listed in Tables I and It from which we see that the solutions calculated
by these different methods are in approximate agreement.

TABLE II

The Coefllcients ill for Motz's Problem

o 2

Combined

method 400,665 87.767<) 17.6683 -9.663 II I 7<)<)88

rhatcher's

method 400,8 88.0 17.3

Symm's

method 401.2 87.2
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The combined method (4.8) is relatively simple to use but. in Thatcher-s
method, an eigenvalue problem must first be solved for the case shown in
Fig. 3.

We notice that only five unknown coefficients, a,,-a l • need to be
calculated so that a saving in the cost of the calculation IS possible in the
combined method.

6.2. A Common Problem

Consider Lapalce's equation (5.1) on a semicircular domain S (0" r < 1_
o< H n) with the boundary conditions (Fig. 4)

(II

=0
hI II 0.0

The true solution is

and II r /I (0 ~ HS; n). (6.1 )

with the coefficients

I

\. {i r l cos It)
- 1
I I

(0 ~ r II.

(e" I).

(!?; I).

(6.3 )

(6.4 )

Hence. the admissible functions on S 2 are chosen to be

J

/~ a o + ~ alrl cos 10.
I I

The linear finite element method is used in S I with the triangulation shown
in Fig. 4.

y

-1 x

FIG. 4. The domain subdivision f(1r the common problem.
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TABLE l!l

The Numerical Solutions of Eqs. (5.1) and (6.1)

151

Maximal
(0.8.0) (0.4. 0) (0. OJ fO.4. 0) fO.8. 0) (0.0.4) (0.0.8) Error

Combined
method 2.116 4.347 7.058 10.723 16.731:: 6.624 5.516 0.144

Finite element
method 2.111 4.342 7.058 10.732 16.769 6.623 5.511 0.175

Exact solution 2.117 4.343 7.04R 10.700 16.594 6.616 5.509

For comparison, the solution is also calculated by the linear finite element
method on the whole solution domain S, where the triangulation on S I is the
same as in Fig. 4, and the triangulation on S 2 is similar to that on S l •

The solutions obtained by the combined method with L = 16 and the finite
element method are listed in Table III and IV. It is shown in Table III that
both solutions are in approximate agreement. However, there arc 42 and 226
unknown quantities to be calculated in the combined method and the finite
dement method, respectively. Therefore, the combined method is beneficia!
even for a common boundary value problem.

CONCLUDING REMARKS

From the above analysis and numerical examples, it is clear that the
combined method described in this paper should be used for singularity
problems. Moreover, we also recommend that the combined method be used
for solving the general boundary value problem if there exists a large
subdomain where the solution is sufficiently smooth.

TABLE IV

The Calculated CoetfIcients at for Eqs. (5.1) and (6.1)

0 2 3 4 6 8 16

Combined
method 7.058 --7.702 2.837 -1.563 0.859 0.422 n.ns 0.179

Exact
solution 7.048 -7.684 2.8\9 -\.637 0.829 0.38\ 0.227 0.055



152 ZI-CAl U

ACKNOWLEDGMENTS

J wish to express my gratitude to Professor G. Strang. Professor R ~iatll'.",.

L. Endrenyi. and Dr. P. Muir for their valuable suggestions.

REFERENCES

J. P. G. CIARLn. "The Finite Element MettJod for Elliptic Problems:' North Holland.
Amsterdam/New York/Oxford. 1978.

2. E. W. CHf'NEY. "Introduction to Approximation Theory:' McGraw· Hill. New York.
1966.

3. S. C. EISI'NSTAT. On the rate of convergence of the Bergman· Vekua method [()r the
numerical solution of elliptic boundary problems. Research Report No. 72 2. Department
of Computer Science. Yale University. New I·!aven. 1'l72.

4. Z. C. LI. On the combination of various finite elcrncl1t mcthods for thc houndan
value problems of elliptic equations. to appcar.

5. Z. C. LJ A~D G. P. Ll.'\NG. On the Ritz-GalcrkinF.LM. comhined mcthod of solving the
boundary value problems of elliptic equations. Sci. Sil1ica 24 ( 1981 I. 1497 .! 508.

6. S. L. SOIlOL!'V. "Application of Functional Analysis in !'vlathcmatical Physics:' Transl I
E. Drowder. Amer. Math. Soc .. Providencc. R. I.. 1%.1.

7. G. STRANG A'iD G. J. FIX. "Analysis of the Finitc Element Method." Prentice" Hal/.
Englewood ClifTs. N. 1.. 19H

8. R. W. THATCHER, Thc usc of infinite grid refincment at singularities in the solution "I
Laplace's equation, Numer. Marh. 25 (I 'l76), 163· 178.

'l. J. R. \VHlTEMA1\ A"'!) N. PAPAMICfL\FI. Treatment or harmonic mix('d hOlJndan
prohlems by conformal transformation methods. Z. 4I1.ecl\· ;Hmh. Pin' 23 f I 'Ji~)
655 -664.

10. O. C. ZIENKIEWCI1.. D. W. KEUI·Y .. \"'U P. BI'IlISS, Ille CGupimg Ollhc JIl1ile clement
mcthod and boundary solution procedures. Intern. I Nlllller. Methods l:.l1g.lR II (19'77 I.
355375.


